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Motivation The digital camera is the product of an arms race: between increas-
ing the number of megapixels during image capture, and throwing out most of the
raw data during compression.

Since camera sensors are made of silicon, camera manufacturers can piggyback
onto Moore’s Law to cram exponentially many sensors onto a single chip. How-
ever, there are many other domains where measurement is expensive—such as
infrared cameras, astronomy, and medical imaging—where this wasteful model
is not viable. For these applications, we would like to minimise the amount of
redundant information captured at the sensor end.

In general, given a data vector x ∈ Rn, we can model a set of m measurements
by a measurement matrixA ∈ Rm×n, and we want to recover x fromAx. Of course,
this is impossible in general if m < n, since A cannot be injective. However, for
most domains of interest, there is an appropriate basis in which the data is (nearly)
k-sparse for some k� n, meaning that at most k components are nonzero.

Write Σk := {z ∈ Rn : ‖z‖0 6 k}, the set of k-sparse vectors in Rn. We can now
formulate the central problem of compressed sensing:

Problem. Given k� n, find a measurement matrix A ∈ Rm×n with m� n, such that
any x ∈ Σk can be efficiently recovered from Ax.

For any hope of a solution, we clearly need A to be injective on Σk, in which
case x is the unique solution of the optimisation problem

min
z
‖z‖0 with Az = Ax. (P0)

The issue is that the above `0 minimisation problem is NP-hard. Conventionally,
(P0) is relaxed to the least-squares problem

min
z
‖z‖2 with Az = Ax, (P2)

which can be solved very quickly. However, in general the solution is not sparse,
and the reconstructions are rather poor in practice.

The `1 variant of the above problems,

min
z
‖z‖1 with Az = Ax, (P1)
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is a convex optimisation problem, and hence can also be solved efficiently. In 2004,
it was noticed that (P1) gave exact reconstructions of certain MRI test images with
only 2% of the Fourier coefficients needed conventionally (Candès-Romberg-Tao
2006). The theoretical analysis of this phenomenon gave rise to the field of com-
pressed sensing. We shall present some of its key concepts below.

The restricted isometry property Motivated by the above discussion, we want
to find A such that (P1) has unique solution z = x for all x ∈ Σk. We shall do this
by reducing to a condition which holds for random Gaussian matricesAwith high
probability.

Definition. A matrix A ∈ Rm×n is said to have the null space property of order k
(NSPk) if for all v ∈ kerA\{0}, and T ⊆ [n] of size k, we have ‖vT‖1 < ‖vTc‖1.

In other words, the largest k coordinates of v (by absolute value) contains less
than half the mass of v.

An easy consequence of the definition is the following:

Proposition. (P1) has unique solution z = x for all x ∈ Σk ⇐⇒ A has NSPk.

However, verifying NSPk is hard, so we introduce the following condition:

Definition. Given A ∈ Rm×n, the restricted isometry constant of order k is the mini-
mal constant δk(A) > 0 such that∣∣‖Ax‖22 − ‖x‖22∣∣ 6 δk‖x‖22 for all x ∈ Σk.

If the restricted isometry constant is small, then A almost preserves the inner
product. Combining this fact with some elementary estimates, we obtain:

Theorem. If δ2k(A) < 1/3, then A has NSPk.

The main result of the presentation is the following:

Theorem. Let n > m > k > 1, 0 < ε < 1, 0 < δ < 1. Then there exists an absolute
C > 0 such that if

m > Cδ−2(k ln(en/k) + ln(2/ε)),

then with A = 1√
m
(ωij)

m,n
i,j=1, whereωij ∼ N(0, 1),

P(δk(A) 6 δ) > 1− ε.

Proof (sketch). By usual concentration bounds on
∑
iω

2
i withωi ∼ N(0, 1), we have

P
(∣∣‖Ax‖22 − 1∣∣ > δ) 6 2 exp(−C0δ2m)

for fixed x ∈ Rn with ‖x‖2 = 1.
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For each of the
(
n
k

)
k-dimensional subspaces in Σk, cover its unit sphere Sk−1

with 9k balls of radius 1/4, by a greedy choice. Then we can use the set of centres
S as anchor points by the estimate

sup
z∈Sk−1

∣∣‖Az‖22 − 1∣∣ 6 2 sup
xi∈S

∣∣‖Axi‖22 − 1∣∣ .
Finally, we succeed if none of the anchor points fails, so by the union bound,

P(δk(A) > δ) 6
(
n

k

)
(9k)(2 exp(−C0(δ/2)2m))

6 exp
(
k ln(

en

k
) + k ln 9+ ln 2−

C0δ
2

4
m

)
,

which can be rearranged to the desired result.

When k = O(nc) for 0 < c < 1, this theorem says that we can reconstruct the data
from O(k lnn) random measurements with high probability. Observe that even if
the support of the data is known, we still need k measurements to reconstruct the
data, so this result is only a logarithmic factor from optimal.∗

Noise The above results do not directly apply to real-life scenarios, since it is
not clear that they are either

– stable (works when x is almost, rather than exactly, k-sparse), or
– robust (works when measurements y = Ax+ e contain noise ‖e‖2 6 η).

For these problems, the appropriate optimisation problem to consider is

min
z
‖z‖1 with ‖Az− y‖2 6 η, (P1,η)

and we have the following noise-aware analogue of the main result:

Theorem. If δ2k < 1/3, then (P1,η) has solution z with

‖z− x‖2 6
C√
k

inf
x̂∈Σk

‖x̂− x‖1 +Dη,

with C,D > 0 depending only on δ2k.

Hence the error of recovery is linear in the distance of x to Σk and the noise level
of the measurements, which is as good as one can hope for.

Matrix completion There is also a matrix analogue to compressed sensing
which has arisen in applications such as recommender systems and global posi-
tioning. In these contexts, the data is a matrix M ∈ Rn1×n2 (n1 6 n2), and we

∗In fact, when the recovery is required to be stable (see next paragraph), the above bound is
known to be optimal up to a constant factor, by a combinatorial argument.
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observe its values at a subset of indicesΩ ⊆ [n1]× [n2]. We can represent this by a
linear operator on Rn1×n2 :

RΩ(M) =
∑

(i,j)∈Ω

mijeieTj .

We replace the sparsity assumption for compressed sensing by a low-rank as-
sumption on M, to arrive at the matrix completion problem:

Problem. Given r� n1 6 n2, find the smallestm such that for randomΩ ⊆ [n1]×[n2]
of size m, any matrix M ∈ Rn1×n2 of rank at most r can be recovered efficiently from
RΩ(M) with high probability.

We first note that this is not a well-posed problem for all M: for instance, if M is
zero in every row except the first, then we cannot reconstruct the first row unless
we see all its entries, so m = (1 − o(1))n1n2! The problem here is that we gain no
information about the first row by looking at other rows. As such, we need some
technical restrictions on M.

Definition. For a subspace U ⊆ Rn with dim(U) = r, the coherence of U is

µ(U) =
n

r
max
16i6n

‖PUei‖22.

We have the following incoherence conditions:
A0: µ(RS(M)), µ(CS(M)) 6 µ0.
A1: If M has singular value decomposition M = UΣVT , with Σ ∈ Rr×r, then

the entries of UVT have absolute value 6 µ1
√
r/n1n2.

As before, M is the solution to the NP-hard optimisation problem

min
X

rank(X) with RΩX = RΩM,

which we can relax to the convex optimisation problem

min
X
‖X‖∗ with RΩX = RΩM, (P∗)

where ‖ · ‖∗ is the nuclear norm (sum of singular values).

Theorem (Recht 2011). If β > 1, M satisfies A0 and A1, and

m > 32max(µ21, µ0)r(n1 + n2)β ln2(2n2),

then (P∗) has unique solution X = M with probability at least

1− 6(n1 + n2)
2−2β ln(n2) − n

2−2
√
β

2 .

By the coupon collector problem, we need O(n2 lnn2) observations to see at least
one entry in every column; hence the above bound can be improved by a factor of
at most O(lnn2).
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Proof (idea). Similar to previous approaches, Recht wants to construct an approxi-
mate solution to the dual optimisation problem. To avoid dealing with messy de-
coupling inequalities such as in Candès-Recht (2009), we will choose Ω uniformly
with replacement from [n1]× [n2].

Recht reduces the problem to checking that the following hold w.h.p.:

n1n2

m

∥∥∥∥PTRΩPT − m

n1n2
PT

∥∥∥∥ 6
1

2
, (1a)

‖RΩ‖ 6
8

3

√
β ln(n2), (1b)

and there exists Y ∈ Ran(RΩ) with

‖PT (Y) − UV∗‖F 6
√

r

2n2
, ‖PT⊥(Y)‖ <

1

2
, (2)

for certain projection operators PT ,PT⊥ defined in terms of U and VT .
(1a) states that RΩ is nearly (a multiple of) an isometry on T . This is proven

with the matrix Bernstein inequality.
(1b) is a bound on the maximum number of repetitions of any entry inΩ, which

follows from a standard Chernoff bound.
For (2), Y is defined recursively by splitting Ω into blocks Ωk, using the fact

that each RΩk is nearly an isometry.
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